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The methods of classical group analysis make it possible to identify those equations 
of mathematical physics which are notable for their symmetry properties. Unfortunately, any 
small perturbation to the equation destroys the symmetry and hence the group, which decreases 
the practical value of these "special" equations and the group-theoretic methods. Therefore, 
it is necessary to develop methods of group analysis which are stable against small perturba- 
tions of the differential equations. The importance of this problem has been noted on se- 
veral occasions by L. V. Ovsyannikov. In the preface to his first book on group analysis 
[i], he stated that "The study of group properties in 'total,' the elucidation of approximate 
group properties, and other questions, still await solution." In 1974 he noted again [2] 
that "a general theory of approximate group analysis has yet to be developed." 

Recently [3, 4], an analytical theory of approximate symmetries of differential equa- 
tions with a small parameter was developed. Determining equations for the approximate sym- 
metries were derived and approximate symmetries were constructed for several classes of equa- 
tions. If the equation 

Fo + ~F~ = o ( 0. i )  

with small parameter e approximately admits [to order o(eP)] the infinitesimal operator 

X = Xo + ~X~ + ...+ ~vXp, p ~ i, 

as a symmetry operator, then the unperturbed equation 

( 0 . 2 )  

Fo = o (0.3) 
admits (not approximately, but exactly) the operator X 0. In general, not every operator X 0 
admitted as a symmetry operator by (0.3) is inherited by the perturbed equation (0.i), i.e., 
an approximate symmetry corresponding to the operator (0.2). The complete inheritance by 
the perturbed equation of the entire symmetry group of the unperturbed equation in the form 
of an approximate symmetry group can occur in exceptional cases. As shown in [3], it occurs 
for evolution equations of the type 

u t = h(u>u x + 8H, (0.4) 
where h(u) is an arbitrary function; H = H(t, x~ u, u x, ...) is an arbitrary element of the 
space 9 [x, u] of differential functions. In this case the order p of the inheritance can 
be chosenarhitrarily. Hence, one can introduce into consideration a new object: formal 
symmetrY~and Ithe intimately Connected formal Becklund transformation. The present paper is 
devoted to the study of these formal symmetries and transformations. 

When we go from approximate symmetries to formal symmetries we can remove the condition 
on the smallness of the parameter ~ and consider it as a "graduating" element. The formal 
symmetries of (0.4) can be represented as a formal power series of the form 

! = ~  8~I ~, /~,-~ 

and are constructed recursively with the help of the equation 

(o.5) 

x (u,- h (u)u,- ~) I(0,) = 0, x = ! ~ +... 

When the parameter r is small, any finite sum of the series (0.5), Which defines a formal 
symmetry, also defines an approximate symmetry. A special type of formal symmetry is one 
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satisfying the cutoff condition of the formal series (0.5). When this condition is fulfilled 
we obtain the well-known Lie-Becklund symmetries. We note that this approach gives an essen- 
tially new method of constructing Lie-Becklund symmetries which differs from the usual method 
[5] in that the process of constructing the coordinates of the canonical Lie-Becklund oper- 
ator now goes from the lower derivative terms to the higher, rather than from the higher to 
the lower. Our approach also explains how it happens that the Lie-Beck!und groups of the 
Burgers and Korteweg-de Vries equations taken separately are not symmetry groups (in the frame- 
work of the Lie-Becklund group theory) of the combined Burgers-Korteweg-de Vries equation: 
it turns out that in the Burgers-Korteweg-de Vries equation these groups become formal sym- 
metries which do not satisfy the series cutoff condition. 

Formal (approximate) Becklund transformations are also given by recursively constructed 
formal power series (i.e., by their finite sums) in e with coefficients from ~. With the 
help of the formal Becklund transformations it is possible to linearize any evolution equa- 
tion reducible to the form (0.4). For example, the Korteweg-de Vries equation u t = uu x + 
Uxx x is linearized in this way. Earlier in [6] this equation was linearized by means of 
a formal series and its convergence to the equation u t = Uxx x was discussed. The convergence 
of this series (in a certain sense) was demonstrated in [8] using the theory of nonlinear 
Lie group representations [7]. In contrast to the linearization of [6, 8], in our approach 
the formal series are constructed with explicitly "calculated" coefficients; our approach 
also brings out new group properties of the Korteweg-de Vries equation. 

The following notation is used: t and x are the independent variables; u is a differen- 
tial variable with successive derivatives (with respect to x) ua+ I = D(ua), a = 0, i, 2, 

..., u 0 = u, where D=010z+~ua+10/0u~;~[x, u] is the space of differential functions, i.e., 

analytic functions of an arbitrary finite number of variables t, x, u, ul, '''; ft = 8f/St; 

fx = 8f/Sx; f~ = 8f/Su~; /.= _~, /aD s . 

THEOREM i.i. 

I. FORMAL SYMMETRY OF THE EQUATION u t = h(u)u x + sH 

All of the symmetries of the equation 

ut = h(u)u~ 

are inherited by the equation 

u~ = h(u)u,  + el l ,  H ~ 5r 

and can be expressed in the form of formal symmetries 

(I.i) 

(i~ 

/ = ~  e{] ~, / ~ .  (1.3) 
~ 0  

N a m e l y ,  a n y  c a n o n i c a l  L i e - B e c k l u n d  o p e r a t o r  X 0 = f ~  + . . . ,  a d m i t t e d  by  ( 1 . t )  c o r r e s p o n d s  
t o  t h e  o p e r a t o r  X = f a / O u  + . . .  w i t h  c o o r d i n a t e s  ( 1 . 3 ) ,  w h i c h  i s  a d m i t t e d  by  ( 1 . 2 )  a s  a sym-  
m e t r y  o p e r a t o r .  

P r o o f .  The d e t e r m i n i n g  e q u a t i o n  D t ( f )  - h ( u ) D x ( f  ) - h ' ( u ) u l f  = ~ H , f  f o r  t h e  i n f i n i t e s i -  
m a l  o p e r a t o r  X = f O / S u  + . . .  a d m i t t e d  by  ( 1 . 2 )  t a k e s  t h e  f o l l o w i n g  f o r m ,  a f t e r  d e c o m p o s i t i o n  
i n  p o w e r s  o f  e :  

fit - -  h (u) /~ + ~ [D ~ (hu~) - -  hu~+l]/0~ - -  h'  (u) u~] ~ = 0; ( 1 . 4 )  
~ 1  

] i - -  h(u)]~-~- E [D=(hu~)-- hU=+l] /=-- 
~ ( 1 . 5 )  

--h'(u) uff ~ = ~_~ [D =(/-~)H=-:=~-~D =(H)], i= l , . ~  . . .  
~ 0  

Equation (1.4) for f0 is the determining equation for the exact group admitted by (i.i). 
Let f0 be an arbitrary solution of (1.4) and suppose f0 is a differential function of order 
k 0 e 0, while H is a differential function of order n e I, i.e., 

/ ~ 1 7 6  . . . . .  Uko), f f = H ( t , x , u  . . . . .  un). 
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We write the solution fi of (1.5) in the form of a differential function of order k I = n + 
k 0 - i. Then (1.5) will be a linear first-order partial differential equation for the func- 
tion fz of the k I + 3 arguments t, x, u, ul, ..., Ukx, and hence is solvable. Substitution 

of any solution f1(t, x, u, ui, ..., Ukz) into the right-hand side of (1.5) with i = 2 shows 

that f2 can be written in the form of a differential function of order k 2 = n + k I - 1 and 
the corresponding equation for f2 is solvable. The higher-order coefficients fi (i ~ 3) 
of the series (1.3) are found recursively from (1.5). Hence the theorem is proven. 

to  
THEOREM 2.1.  

2. FORMAL BECKLUND TRANSFORMATIONS 

Equation (1.2), u t = h(u)u I + eH, with arbitrary function HE'is related 

vt = h(v)vl 

by the  formal  Becklund t r a n s f o r m a t i o n  

v = u + Y, e+~ +, r ~ ~ .  

Proof .  S u b s t i t u t i o n  of  (2 .2)  i n t o  (2 .1 )  g ives  

( 2 . 1 )  

(2.2) 

Hence, using the identity (see [3, Eq. (2.8)]) 

J 

i#l / j~l k=l it+...+ih=~ 

and (1.2), and decomposing with respect to powers of e, we obtain 

e~ 1 h (u) ~ -- + ~ [D = (hu~) hue++1] ePtm - -  h '  (u) u z O  1 = - -  H;  
r 

(2.3) 

@~ - -  h (u) @+~ + ~,, [D ~ (huz) - -  hum+l] ePim - -  h '  (u) uz~' = 
o+>~1 

i 
= - -  ~P~-ID'Z tH~ h (h) E ~ , , + u , E  (u) E r  

a>/0 k~2 il  + . . .+ /h={  

+ X D(OJ) h (h)(u) X c o b " "  Oih ' i~>2, 
j+l=i = il+...+ih=! 

(2.4) 

where the indices i z, ..., i k, j, s takes the values i, 2, ... Let H be a differential 
function of order n ~ i, i.e., H = H(t, x, u, ..., Un). We will write the solution #i of 
(2.3) as a differential function of order n. Then (2.3) is a linear first-order partial 
differential equation for the function ~! of the n + 3 arguments t, x, u, u I, ..., u n and 
therefore is solvable. Substitution of any solution #%(t, x, u, u I ..... u n) into the right- 
hand side of (2.4) with i = 2 shows that #2 can be written as a differential function of 
order 2n, and the corresponding equation for r is solvable. The higher-order coefficients 
~i of the series (2.2) are determined recursively from (2.4). The theorem is proven. 

The following facts are correct for the transfer equation (2.1): the change of vari- 
able v = h(v) transforms (2.1) to the "standard" form 

%t = %~, ( 2 . 1 ' )  

and (2.1 ')  i s  l i n e a r i z e d  us ing  the  hodograph t r a n s f o r m a t i o n  y = v,  w = tv  + x: 

wt = 0. (2.5) 

Therefore from Theorem 2.1 we have the following important consequence: 
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Consequence. Equation (2.1) is reduced to the linear equation (2.5) for the function 
w = w(t, y) by the formal Becklund transformation 

~i i~l ] 

where 

h ~t+ E e~dp~ ~h(u)+eh'(u)qPl +e2 h'(u) q)2 +_2_ (u)(dPi)2 + 

and the coefficients r ~2 .... are found recursively from the system (2.3), (2.4). 

Note 2.1. The Becklund transformation (2.2) makes it possible to construct the formal 
symmetries of Eq. (1.2) from the symmetries of (2.1) [and hence from the symmetries of the 
linear equation (2.5)] without using Theorem i.!, but using the conversion formula [5] 

fu =[1 + ~> e:*~,] -:/~ (2.7) 

[fu and fv are symmetries (exact or formal) of Eqs. (1.2) and (2.1), respectively]. 

3. FORMAL RECURRENCE 

In the theory of Lie-Becklund groups one introduces recurrence operators, which make 
it possible to construct the solutions of the determining equations without solving the equa- 
tions themselves. Similarly, we use formal recurrence operators to construct the formal 
symmetries. For (1.2), u t = h(u)u I + eH, Hes&, the formal recurrence operator 

Z=~D+~+~D-~+ .... ~ , p Z v ~ . . . ~  (3.1) 
can be obtained using the formal Becklund transformation (2.2) of the recurrence operator 
of the unperturbed equation (2.1): 

L =  ~ D x ~  + p + ~v~DT~h ' (v) + . . .  (3 .2 )  

Here ~, ~, u .... e ~ [x, v] are arbitrary functions of v, x + th(v), t + i/(h'(V)Vl), ... 
The conversion formula, relating the recurrence operators of (1.2) and (2.1), takes the form 

�9 i ~ l  

Note 3.1. Any finite sum of the power series (3.3) in c gives an approximate recurrence 
operator. When the cutoff condition of the series (3.3) is satisfied we obtain the usual 
recurrence operators. 

These methods are used below to study the ordinary and modified Korteweg-de Vries equa- 
tion and the Burgers-Korteweg-de Vries equation. 

4. EXACT AND FORMAL SYMMETRIES OF THE KORTEWEG-DE VRIES EQUATION 

We construct the symmetries of the Korteweg-de Vries equation 

u~ = uul + ~u3 (4~ 1) 

by the method mentioned in Note 2.1. To do this we find the formal Becklund transformations 
(2.2) connecting (4.1) to the transfer equation 

~t  ~ UUI" 

We will assume that the coefficients r in (2.2) do not depend on t and x. 
u 3 in this case, the system (2.3) and (2~ takes the form 

(4.2) 

Then, since H = 

[ D  ~ (UUl) - -  u u a  + f l  q ) ~  - -  u l  ~ 1 = - -  u3; (4.3) 
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2] [D~(uu0 - uu~+l] q~ - u~O ~ = 

ap~ u~+,+ ~ D ( ~ ) q ~ ,  i~>2. 
o~>~0 j + l = i  

(4.4) 

According to the proof of Theorem 2.1, a particular solution of (4.3)can be written as a 
differential function of the third order. It follows from (4.4) with i = 2 that r is a 
differential function of the sixth order. The other coefficients #i (i > 2) of the formal 
transformation (2.2) are found in the same way. Heiace, 

v =  u + ~ 2 ,, + - - z  uT ) s ,,~ 40 ,.~ 40 '4 ~- 

t2u~u4 2tu~,u2a tiu~u3 2 u ~  [ i u 9 t9u@S + 

439 UaU a 3207 u~,uaua 2029 ua2ur 67 u~ 269 uau ~ 863 u~u 7 + . . . .  
+~60 ~ 560 u~ 560 ~: 560 ~ + - ~  ~ + i 4 0 ~ ,  

943 u2u, u 5 2679 a~u 5 2949 u~u,u 5 t079 u~u~ 461 u3u~ 799 u~u~ + 
u2 ~,1 ~ 56o =~ + so ,,? 40 ~'I so  u~ + 3~ .--~- 

( 247 u.,iz~ua 19 u'~u~u4 80.._~1 u~u___4 _4_ 
+ 5 3 - - ~  u~ t 5 8 + W  u7 + io u~ tl2u~S 

u2----J~ (24t 3 )  u~u] (184 21u~uz ! ] 3754 u~ ="3 + + --u~" -- + --3-1 7 1  + 4 2 , 7 j  + . . .  

(4.5) 

To transform a symmetry fv of (4.2) into a symmetry fu of the Korteweg-de Vries equa- 
tion (4.1) by means of (4.5), we use (2.7). Using (4.5) and 

( l + e A  + e 2 B + ' ' ' ) - i =  i - - e A  +e2(AZ--B)  + " "  (4.6) 

(2.7) can be written in the form 

/ , ,= t +  e { D3__  u_._tD2 i us ul D + u~ 2 u~ D + u~ 

6~u, 2~,~u, ,,~ (4.7) 
2t- 40 u~ + "2 u~ t7 D* + 

( 2, u, 36~.. ,5-~ sT+.  "~I 
+ 40 ua + 5 u~ + 8 u~ 2 u~ +35 u , / D t  + 

( 33 uzu, 99 u3u 4 99 u~u, u,,u~ u~u 3 ~ O] } + ~5 u--~" + 7"5 u'-~l --7-6" u'-~l ~ u'-~, + 55-~( --33 u~) J + " ' "  Jr. 

Application of (4.7) to the point symmetries fv corresponding to Galilean transformations 
and scaling transformations for the transfer equation (4.2), converts them into corresponding 
point symmetries of (4.1), i.e., in these cases the cutoff condition of the series (4.7) 
is satisfied. 

We consider now the point symmetries 

= ~(v)v I, (4.8) 

which give the nonlinear form for (4.2) of the principle of linear superposition for (2.5), 
which states that (2.5) is invariant when an arbitrary function ~(y) is added to w. 

If ~(v) = v2, then (4.7) gives 

/ ,  = u2ul + e[4ulu2 + 2uua + (6/5)~] + ... (4 .9)  
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According to [3], the cutoff condition for the series (4.9) is satisfied and, therefore, 
the point symmetry fv = v2v~ transforms into the well-known [5, p. 191] Lie-Becklund sym- 
metry of (4.1). Similarly, it can be shown that for the point symmetries fv = vnv~ with 
integer n > 2 the formal series fu satsifies the cutoff condition and gives the well-known 
Lie-Becklund symmetries of (4.1) (see also [3]). 

All of the remaining point symmetries of the transfer equation (4.2) [and also symme- 
tries obtainable from them using the recurrence operators (3.2)] transform into formal sym- 
metries of the Korteweg-de Vries equation. For example, the symmetry (4.8) in the case of 
a nonpolynomial function ~(v) transforms into the formal symmetry 

( t ) ~ [ 3 .  9 , , ,  
1~, = ep (u) u~ + e r + 2g/u~u~ + -~- ~" u~ + ~ ~-g- ~ u~ + -g- ~ ulu~ 

23 31 8 t "~ + 3~" u~u~ + T~ ~Vu~un + - ~  ~'Vu~u~ + ~ eiVu~u~ -]- -g- ~Wu~ ] + "'" 

5. EXACT AND FORMAL RECURRENCES OF THE 
KORTEWEG-DE VRIES EQUATION 

We transform the recurrence operator L of (3.2) for (4.2) into the formal recurrence 
operator s for (4.1) using the transformation (4.5). According to (3.3), the operators L 
and s are connected by the formula 

= (D.~Lq)., ( 5 . 1 )  

where 

�9 ( ) O ,  = I + eD - -  ~ @ 2u~D + e~ D D~ 19 % D~ __ 
. .  40 u~ 

30 u~ 39 %% 8 u~ D ~ t % D~ + - ~  ~ D~ ~ ~ D~ + - ~  ~ D~ - -  - - - -  
20 u~ 40 u~ 5 u~ 4 

57 u2u4 27 u~ D 39 u~u.~ u~  
+ 40 u~=D+-~ u~ 10 - - r D @ 2  D + . . . .  

% D+ 

and r i is found with the use of (4.6). 

For example, substitution of the operator L 1 -- 8(v) into (5.1) and theuseof the relation 

(% (U) = ~ (U) + E~' (U) 2 /t 1 + 2 Ul ] + 82 ~' (U) 8 

2t u2u~ 1t u3 29 %u 5 37 u3u 4 12 %u__ 4 + .,u.~+ 

U 1 

2 --z- § (u) - - 2  " ' +  + . . .  
+ ~ ~ u,~ ~i )J 

u e 

gives 

+ ~ + - T ~ u z +  2 " l0 ut 

9 ~,,, ulD3 3 ~ 2 D,~ 3 ~ u4 D~ + t4 V%% D2 ~2 [J'u~ 
+ ~ 4 u 1 5 u--~1 5 u~ 5 u~ D2 - 

tt U2 p 

3~ ~"% D~ + ~ ~"u:~ D~ + ~ ~,,,~D~ + ~_ ~V~D~ ~ ~UoD+ 
20 u 1 W ~ 1o ~ 

t7 [~'u~ D 48 ~'u~% [~'u~ 60 ~"u, 23 ~ ' % u 4 D + "Y6" ~ 5 (Y D "4" 6 D D + + to ~ ,~ ~ 40 ~ (5 .2)  
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rib' 3 

._}_ 6t ~"usu3 - t77 P ~2 1--~ 23 ~"u~ 3 ,~IV u U D 
10 u, ~ l)  40 ~ D - -  ~ " u ~ D +  20 u~ D + ~ p  ~ ~ + 

, , , 2 ~ ' u ~ %  3 - v  a,'-. 3 ~ u~u~. + 9 ~ u3u ~ 27 ~'u~U~ 9 ~ u~u_..., a 
+ T p  u ~ u +  t0 u~ t0 U~ to u~ 2 u~ + 12 ui 

99~ 2 ~ 39,43 ~o~i~"u~u~ i??~"u~ - -  6 l]'us~ 21 ~"u~ -k - -  ' + -- 

9 ~,,, 9 ~"u~u a 23 l~"u] t7 -IV tt 29 ~IVu~ 
20 Ui-~ 5 ul 20 U~ -~ ~- p ttl s + ~  + 

n f~v u~tt~ + ~ ] + - ~  ~ fiv~u~ + . . .  

( 5 . 2 )  

Similarly, for the operator L 2 = viD -I we have 

-= ~ [ 1 L . , O ,  = u lD  -1  ~ 8 D + u, ~[ + ~" I -~--~;  D~ - -  
> L u~ 

24 u~ D~ 3 u5 4 u~ D a + 6 u 4 D~ 28 %%D~ + _  ~ + D -  

2lt tt~ U2M 5 96 u., s 3 23 u2u 4 D 17 u~ D + - -  - -  D - -  12 - =  D 
5 u~ 5 u 7 5 ut ,,'i 5 ~,~ 

9 uau+ 2__/.7 ~u__.../4 ~2~ 24 u~,..+:+ u~  ] + . . . .  
5 u~ + 5 Ul + 9"-~-1 -- "~ + t 2  u~J 

(5.3) 

It follows from (5.2) and (5.3) that for ~(u) = u the formal recurrence s = s + 2s 
is given by the cutoff series and coincides with the well-known exact recurrence s = u + 
2uiD -I + 3eD 2 of the Korteweg-de Vries equation (4.1). 

6. ON THE CUTOFF OF THE FORMAL SYMMETRY SERIES 
OF THE MODIFIED KORTEWEG-DE VRIES EQUATION 

For the equation 

u t = h ( u ) u l  -]- eu3 �9 ( 6 . 1 )  

we consider the formal symmetries (1.3) with coefficients fi which are independent of t and 
x. It follows from Theorem i.i that if f0 is a sy~mletry of (!.i), then the coefficients 
fl, f2, ... are given by the determining equations 

~, [D ~ ( h u l ) -  hu~+l] ]~ - -  h' (u) ul / i  --_ 
w>~ l 

/~ -1~  u D 2 / ~ - ~ u  ] = ~, [2Dts~  ] ~+2+ t1~ ]. ~+~, i > ~ t .  
(6 .2 )  

It can be shown from the solutions of (6.2) that in the case htii(u) = 0 the cutoff 
condition of the series (1.3) is satisfied if f0 = ~(u)u~, where ~(u) is a polynomial func- 
tion. This is consistent with the well-known fact that the Lie-Becklund group exists for 
the ordinary and modified Korteweg-de Vries equations (see [5, p. 215], for example). Ap= 
parently the cutoff condition for the formal series (1.3) is satisfied only when h(u) is 
of the form h = C1u + C2u2; this is suggested by the structure of the first few terms of 
this series, obtained by solving (6.2): 

' , I " 8 
/1 = ~lua + 2~ lu lu  ~ ~ "-5" ~lul ,  

�9 3 9 , , i 23 ,, 2 1 h "  \ = ~ , ~  + ~ r  + 3 r  + [ ~ , ~  + -s- ~ h~ - ~ r ~ ) ~ i ~  + 
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[ 31 . ~ 4 . . . .  1 h" \ [ 8 ,,, 4 "h" 3 . . . . .  

t ~ v  i ,%- ;~)u ,u=+ 
5 %-W §  T - i  - ~  +-3- %n + T  %a + 

1 h"h" 2 h'h Iv i h v t (h") 2 2 , (h'@ h"~ 
+ ~ % - 7 -  + ~ % (~,? - ~ % ~ + ~ % (~,).~ -5-v~ ~ } ~ ,  

' e  ~ ~ " ( -~ ~ "~  ' : ~  " = - ~  ,hu, + - ~ , ~  + ,b'~ - ~ % (~,)---~.) u ~  + --f- t ~  % - 

- - c , = ~ +  3 r  ~ + -,=--~,=[;Tju~u,+... 

H e r e  , l ( u )  = T' ( u ) / h ' ( u ) ,  , k ( U )  = 0 k - ~ ' ( u ) / h ' ( u ) ,  k = 2 ,  3 ,  . . .  

7. FORMAL SYMMETRIES OF THE BURGERS-KORTEWEG-DE VEXES EQUATION 

For the Burgers-Korteweg-de Vries equation 

u t = uui + e(a~ + bu~) ,a ,b  = cons t  

we find the transformation reducing it to the transfer equation (4.2) and we 
formal symmetry associated with the point symmetry fv = ~(v)v~ of (4.2). 

In this case we have h = u, H = au s + bu 2 and the solution of the system (2.3), (2.4) 
under the condition that the r are independent of t and x gives 

( 7 . 1 )  

construct the 

1 u 5 
+ T a b  u~ 

a U 3 ~ U I 

�9 9 3 v = u + e  2 u t + 2 u~ 8 u7 40 =1 

9 U l U 3  =5 37 a~U~_~, ~2 ~ ~]~, ~=u~ ti a - ~ +  2a~--~ + 
~o u: + ~  - C + - ~  a~ ~: 2 ,,~ u~ 

u~ui 5 57 u~u~ i3 u~ t ~ u~ 5 9 ab ab ~ + - ~  ab ab __.2.'>- + 

a ue 29 b % /  + e 2 a 2 ~u5 
ut ] 

b2 %U___3 bZ Ug~L l + . . .  

In this case (2.7) takes the form 

] u =  l + s  + - -au~ + + 2 u~ + a  ua ' 

- - b  D + e  z -- -- -- [8u'~ + - ~ a  ua ~ +-~-ab + - ~ a  ~ +  
�9 = 1  

5t 2 u~ t3 ab u2 ( 63 o u4 u~u,~ + - ~ a  u~ 4 --3 + l'~-" be J!-~ D4 + t - -  - -  + 2@a2 ' ul z u~ ] ~ a" u~ u~ 

__t7a2 uA 4 a b ~ q -  5---~ab u~ 7 b2 U2~Da + (  2i a2 ua 

u~u u~ 7 ab u--! %% + 365 a~- u2u--~4u~ + --g-a452 u~U~ 872 a 2 ~ u l  + 35a~" u~ 4 u~ + ~ ab u~ 

t23ab  u~ 4 b2 u._.33 U~ ~ D z + (33 a~ %% 99 ~usu,~ 
- - r  ul 3 .~ + 562 ~17 . ~  =i + -~  ~ ul 

99 a ~. =,u, 33 ~= u # j  + 5aa_~ ~," _ 3 3 ~ - -  + @ ab =~ + @ ab "I 

"I=. "' u=u= ~ - 1  / 
12t ab - -  + 22ab--~.2~ -t- 2b 2 - -  - -  4b: D + . . .  f~. 

=,= =, =I "~ ) 
t j j 

For fv =~(v)vl we have, according to (7.2), 

( ,, 1 " u~ + bq/u 3 + bqt'u~)+ ]u = qD (u) u 1 + e aq)'u~ + 2a l ) , lu~ + T acp 

( 7 . 2 )  
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( 3  5 i abT, U~3 t abqJ, U3.2 2 - 2 ,  
e2 ~ a%p"ua + -4- abe"u4 + "-~ 20 u~ ~ T o q) u 8 

9 2 , , ,  7 . .,, 23 . , , ,  
-5 -5- a r ulu ~ + 3a~q/" u~u 3 + --f- av~ ulu a + -i-ff ao~ u~ q- 

5 -2 ,,, 23 2 IV ~ 31 a2~iVuiu ~ + ~ ab~iVu~u 2 + "-}- T o q~ Ulu2 .-}- - ~  a r tqu 8 + --~ 

8 ~ v 3 t abcVu~ + t a~q~Viu[ ) . { _ . . .  + + b2@Vu~ + -~-a (p ulu., + -5- -~- 

From this expression and from analysis of the transfer formula (2.7) we see how the Lie- 
Becklund symmetry for the Korteweg-de Vries and Burgers equations transforms into a formal 
symmetry (7.2) for the equation (7.1) that does not satisfy the cutoff condition. 
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QUANTITATIVE CHARACTERISTICS OF THE MAIN CONCEPTS OF LINEAR CONTROL THEORY 

S. K. Godunov UDC 519.6 

In classical linear control theory there is detailed study of the possibility of selec- 
ting a control u(t) which would make it possible to obtain some optimum behavior of trajec- 
tory x(t) described by the system 

~-~x(t) = Ax( t )  + Bu (t). ( 1 )  

Normally it is assumed to be possible to obtain information about the behavior of this 
trajectory only from the vector of observation z(t) = Cx(t). We limit ourselves to consider 
ing a particular, but important in many typical cases, independent of time t, matrix A, B, 
C. There is extensive use (see, e.g., [i-3]) of the concept of controllability for pair 
A, B and the dual concept to each other of stabilizabi!ity for A, B and detectability for 
pair A, C. (If A, B is controllable or stabilizable, then A*, B e is observable and detect- 
able, and conversely). 

We introduce criteria (necessary and sufficient) for controllability and stabilizabil- 
ity. Pair A, B is controllable if the linear shell of columns for the composite matrix 

(B i A B  i A 2B : ... ! AN-1B) ( 2 )  
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